A physical model reveals the mechanochemistry responsible for dynein's processive motion.
نویسندگان
چکیده
The molecular motor dynein is associated with various cellular activities, such as directed transport along microtubules and the rhythmic beating of the axoneme. Because of the size and complexity of the protein, a detailed understanding of the mechanochemistry that drives dynein's processive motion is lacking. To overcome this deficiency, we developed the first (to our knowledge) computational model for two-headed dynein that couples conformational changes of the motor's subunits to the biochemical steps involved in ATP hydrolysis. Analysis of the model provides what we believe are several novel insights into how the protein functions: 1), structural constraints limit the motion of the free microtubule binding domain to one dimension, increasing the efficiency with which this domain finds a binding site; 2), in addition to the power stroke of the bound head, recovery of the free head to a pre-power-stroke conformation is required for this head to reach a forward binding site; 3), the order in which the power stroke and recovery transitions occur affects the probability of back-stepping; and 4), the existence of multiple equilibria in the motor's bending energy provides a mechanism for processive back-stepping. To the best of our knowledge, our computational model provides the first complete mechanochemical description of the motor protein dynein, and the findings presented here should motivate new experimental investigations to test its predictions.
منابع مشابه
Multiscale approaches for studying energy transduction in dynein.
Cytoplasmic dynein is an important motor that drives all minus-end directed movement along microtubules. Dynein is a complex motor whose processive motion is driven by ATP-hydrolysis. Dynein's run length has been measured to be several millimetres with typical velocities in the order of a few nanometres per second. Therefore, the average time between steps is a fraction of a second. When this t...
متن کاملKinetic models for the coordinated stepping of cytoplasmic dynein.
To generate processive motion along a polymer track requires that motor proteins couple their ATP hydrolysis cycle with conformational changes in their structural subunits. Numerous experimental and theoretical efforts have been devoted to establishing how this chemomechanical coupling occurs. However, most processive motors function as dimers. Therefore a full understanding of the motor's perf...
متن کاملModel for the unidirectional motion of a dynein molecule.
Cytoplasmic dyneins transport cellular organelles by moving on a microtubule filament. It has been found recently that depending on the applied force and the concentration of the adenosine triphosphate molecules, dynein's step size varies. Based on these studies, we propose a simple model for dynein's unidirectional motion taking into account the variations in its step size. We study how the av...
متن کاملAnalysis of kinesin mechanochemistry via simulated annealing
The molecular motor protein kinesin plays a key role in fundamental cellular processes such as intracellular transport, mitotic spindle formation, and cytokinesis, with important implications for neurodegenerative and cancer disease pathways. Recently, kinesin has been studied as a paradigm for the tailored design of nano-bio sensor and other nanoscale systems. As it processes along a microtubu...
متن کاملForce-Induced Bidirectional Stepping of Cytoplasmic Dynein
Cytoplasmic dynein is a minus-end-directed microtubule motor whose mechanism of movement remains poorly understood. Here, we use optical tweezers to examine the force-dependent stepping behavior of yeast cytoplasmic dynein. We find that dynein primarily advances in 8 nm increments but takes other sized steps (4-24 nm) as well. An opposing force induces more frequent backward stepping by dynein,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 101 1 شماره
صفحات -
تاریخ انتشار 2011